Description of problem
If I design spiking neural network where input is Poisson source,1st layer contain 10 neurons, hidden layer contains 20 neurons and output layer contains 5 neurons, if the synaptic connection probability is 0.2,we can easily find the spike times of each layer(input, hidden or output) neurons .But,
(Q1).Is there any way to observe or find interconnection of all neurons, means which source neurons are connected to which destination neurons in the next layer by the synapses(when synaptic connection probability p=0.2,as a result not all the neurons will be connected by synapses)?
(Q2) How can I find the number of spikes transmitted by any source neuron to its destination neuron through synapses, i.e, number of spikes transmitted by each active neuron ?
Minimal code to reproduce problem
from brian2 import *
%matplotlib inline
import numpy as np
start_scope()
N = 10
taum = 10ms
Ee = 0mV
vt = -50mV
vr = -60mV
El = -74mV
taue = 5ms
F = 15Hz
we=(600.27/10)
eqs_neurons = ‘’’
dv/dt = (ge * (Ee-v) + El - v) / taum : volt
dge/dt = -ge / taue : 1
‘’’
I= PoissonGroup(N, rates=F)
#Input layer
E10 = NeuronGroup(10, eqs_neurons, threshold=‘v>vt’, reset=‘v = vr’,method=‘euler’)
E10.v=‘vr+rand()(vt-vr)’
E10.ge=0
S1=Synapses(I,E10,on_pre=‘ge += we’)
S1.connect(p=0.2)
#Hidden layer1
F10 = NeuronGroup(20, eqs_neurons, threshold=‘v>vt’, reset=‘v = vr’, method=‘euler’)
F10.v='vr+rand()(vt-vr)’
F10.ge=0
S2= Synapses(E10,F10,on_pre=‘ge += we’)
S2.connect(p=0.2)
#Output layer
G10= NeuronGroup(5, eqs_neurons, threshold=‘v>vt’, reset=‘v = vr’,method=‘euler’)
G10.v='vr+rand()(vt-vr)’
G10.ge=0
S3=Synapses(F10,G10,on_pre=‘ge += we’)
S3.connect(p=0.2)
#INPUT LAYER
K=SpikeMonitor(E10)
#HIDDEN LAYER 1
L=SpikeMonitor(F10)
#OUTPUT LAYER2
M=SpikeMonitor(G10)
run(100ms, report=‘text’)
What you have aready tried
#spike times of all the active neurons in the input layer
print(K.t)
#spike times of all the active neurons in the hidden layer
print(L.t)
#spike times of all the active neurons in the output layer
print(M.t)
Expected output (if relevant)
NA
Actual output (if relevant)
NA
Full traceback of error (if relevant)
NA